$p \Leftrightarrow q$ =
$\left( {p \Rightarrow q} \right) \wedge \left( {q \Rightarrow p} \right)$
$p \wedge q$
$\left( {p \wedge q} \right) \vee \left( {q \Rightarrow p} \right)$
$\left( {p \wedge q} \right) \Rightarrow \left( {q \vee p} \right)$
સમીકરણ $ \sim ( \sim p\, \to \,q)$ તાર્કિક રીતે .............. સાથે સરખું થાય
જો $S^*(p, q, r)$ એ સંયુક્ત વિધાન $S(p, q, r)$ અને $S(p, q, r) = \sim p \wedge [\sim (q \vee r)]$ નું દ્વૈત હોય, તો $S^*(\sim p, \sim q, \sim r)$ એ કોના સાથે સમતુલ્યતા ધરાવે.
વિધાન " જો ભારત મેચ જીતે છે તો ભારત ફાઇનલમાં આવશે" નું નિષેધ લખો
વિધાન $p → (p \leftrightarrow q)$ =
જો $p \to ( \sim p\,\, \vee \, \sim q)$ અસત્ય હોય તો $p$ અને $q$ અનુક્રમે .............. થાય .